HDU 4757 Tree(可持久化trie)
题意:
$N\le 10^5个点的树,点权A_i < 2^{16},M\le 10^5次询问$
$每次查询u\to v路径上点权与k异或的最大值$
分析:
$由于要取出路径那就只能可持久化trie了$
$每一颗trie都是前缀和,显然根据lca的那个思想,u\to v路径,就是$
$判断u这棵trie以及v这颗trie,以及lca(u, v)这颗trie的cnt域$
$即cnt[u]+cnt[v]-2*cnt[lca(u, v)]是否为正$
$但是这样别忘记特判lca这点的点权。。$
$其他的就是按照普通的做法贪心的去找这个最大值就好了$
代码:
//
// Created by TaoSama on 2016-04-22
// Copyright (c) 2016 TaoSama. All rights reserved.
//
#pragma comment(linker, "/STACK:102400000,102400000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e5 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
struct Trie {
static const int M = 17 * 1e5 + 10, S = 2;
struct Node {
int nxt[S], cnt;
} dat[M];
int sz, root[N];
void init() {
sz = root[0] = 0;
memset(&dat[0], 0, sizeof dat[0]);
}
void insert(int& rt, int fa, int x) {
int u; u = rt = ++sz;
dat[u] = dat[fa];
for(int i = 15; ~i; --i) {
int c = x >> i & 1;
int v = ++sz;
dat[v] = dat[dat[u].nxt[c]]; //copy
++dat[v].cnt;
dat[u].nxt[c] = v; //link
u = v;
}
}
int query(int u, int v, int z, int x) { //lca没算
int ret = 0;
for(int i = 15; ~i; --i) {
int c = x >> i & 1;
int have = dat[dat[u].nxt[c ^ 1]].cnt + dat[dat[v].nxt[c ^ 1]].cnt;
have -= 2 * dat[dat[z].nxt[c ^ 1]].cnt;
if(have) {
ret |= 1 << i;
c ^= 1;
}
u = dat[u].nxt[c];
v = dat[v].nxt[c];
z = dat[z].nxt[c];
}
return ret;
}
} trie;
int n, q;
struct Edge {
int v, nxt;
} edge[N << 1];
int head[N], cnt;
void addEdge(int u, int v) {
edge[cnt] = {v, head[u]};
head[u] = cnt++;
edge[cnt] = {u, head[v]};
head[v] = cnt++;
}
int val[N];
int dep[N], p[17][N];
void dfs(int u, int fa) {
trie.insert(trie.root[u], trie.root[fa], val[u]);
p[0][u] = fa;
for(int i = 1; i < 17; ++i) p[i][u] = p[i - 1][p[i - 1][u]];
for(int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
if(v == fa) continue;
dep[v] = dep[u] + 1;
dfs(v, u);
}
}
int lca(int u, int v) {
if(dep[u] > dep[v]) swap(u, v);
for(int i = 0; i < 17; ++i)
if(dep[v] - dep[u] >> i & 1) v = p[i][v];
if(u == v) return u;
for(int i = 16; ~i; --i)
if(p[i][u] != p[i][v])
u = p[i][u], v = p[i][v];
return p[0][u];
}
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
while(scanf("%d%d", &n, &q) == 2) {
for(int i = 1; i <= n; ++i) scanf("%d", val + i);
cnt = 0; memset(head, -1, sizeof head);
for(int i = 1; i < n; ++i) {
int u, v; scanf("%d%d", &u, &v);
addEdge(u, v);
}
trie.init();
dfs(1, 0);
// for(int i = 0; i < 5; ++i)
// for(int u = 1; u <= n; ++u)
// printf("p[%d][%d] = %d\n", i, u, p[i][u]);
while(q--) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
int z = lca(u, v), ans = w ^ val[z];
ans = max(ans, trie.query(trie.root[u], trie.root[v], trie.root[z], w));
printf("%d\n", ans);
}
}
return 0;
}